Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 491
Filtrar
1.
J Hazard Mater ; 470: 134176, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569347

RESUMO

Biodegradable microplastics (MPs) are promising alternatives to conventional MPs and are of high global concern. However, their discrepant effects on soil microorganisms and functions are poorly understood. In this study, polyethylene (PE) and polylactic acid (PLA) MPs were selected to investigate the different effects on soil microbiome and C-cycling genes using high-throughput sequencing and real-time quantitative PCR, as well as the morphology and functional group changes of MPs, using scanning electron microscopy and Fourier transform infrared spectroscopy, and the driving factors were identified. The results showed that distinct taxa with potential for MP degradation and nitrogen cycling were enriched in soils with PLA and PE, respectively. PLA, smaller size (150-180 µm), and 5% (w/w) of MPs enhanced the network complexity compared with PE, larger size (250-300 µm), and 1% (w/w) of MPs, respectively. PLA increased ß-glucosidase by up to 2.53 times, while PE (150-180 µm) reduced by 38.26-44.01% and PE (250-300 µm) increased by 19.00-22.51% at 30 days. Amylase was increased by up to 5.83 times by PLA (150-180 µm) but reduced by 40.26-62.96% by PLA (250-300 µm) and 16.11-43.92% by PE. The genes cbbL, cbhI, abfA, and Lac were enhanced by 37.16%- 1.99 times, 46.35%- 26.46 times, 8.41%- 69.04%, and 90.81%- 5.85 times by PLA except for PLA1B/5B at 30 days. These effects were associated with soil pH, NO3--N, and MP biodegradability. These findings systematically provide an understanding of the impact of biodegradable MPs on the potential for global climate change.


Assuntos
Biodegradação Ambiental , Microbiota , Microplásticos , Poliésteres , Microbiologia do Solo , Poluentes do Solo , Poliésteres/metabolismo , Poliésteres/química , Microplásticos/toxicidade , Poluentes do Solo/metabolismo , Polietileno/química , Carbono/química , Plásticos Biodegradáveis/química , Bactérias/metabolismo , Bactérias/genética , Solo/química
2.
Chem Rev ; 123(16): 9915-9939, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37470246

RESUMO

Environmental concerns over waste plastics' effect on the environment are leading to the creation of biodegradable plastics. Biodegradable plastics may serve as a promising approach to manage the issue of environmental accumulation of plastic waste in the ocean and soil. Biodegradable plastics are the type of polymers that can be degraded by microorganisms into small molecules (e.g., H2O, CO2, and CH4). However, there are misconceptions surrounding biodegradable plastics. For example, the term "biodegradable" on product labeling can be misconstrued by the public to imply that the product will degrade under any environmental conditions. Such misleading information leads to consumer encouragement of excessive consumption of certain goods and increased littering of products labeled as "biodegradable". This review not only provides a comprehensive overview of the state-of-the-art biodegradable plastics but also clarifies the definitions and various terms associated with biodegradable plastics, including oxo-degradable plastics, enzyme-mediated plastics, and biodegradation agents. Analytical techniques and standard test methods to evaluate the biodegradability of polymeric materials in alignment with international standards are summarized. The review summarizes the properties and industrial applications of previously developed biodegradable plastics and then discusses how biomass-derived monomers can create new types of biodegradable polymers by utilizing their unique chemical properties from oxygen-containing functional groups. The terminology and methodologies covered in the paper provide a perspective on directions for the design of new biodegradable polymers that possess not only advanced performance for practical applications but also environmental benefits.


Assuntos
Plásticos Biodegradáveis , Plásticos Biodegradáveis/química , Polímeros/química , Biodegradação Ambiental , Biomassa
3.
Biodegradation ; 34(6): 489-518, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37354274

RESUMO

Biodegradability standards measure ultimate biodegradation of polymers by exposing the material under test to a natural microbial inoculum. Available tests developed by the International Organization for Standardization (ISO) use inoculums sampled from different environments e.g. soil, marine sediments, seawater. Understanding whether each inoculum is to be considered as microbially unique or not can be relevant for the interpretation of tests results. In this review, we address this question by consideration of the following: (i) the chemical nature of biodegradable plastics (virtually all biodegradable plastics are polyesters) (ii) the diffusion of ester bonds in nature both in simple molecules and in polymers (ubiquitous); (iii) the diffusion of decomposers capable of producing enzymes, called esterases, which accelerate the hydrolysis of esters, including polyesters (ubiquitous); (iv) the evidence showing that synthetic polyesters can be depolymerized by esterases (large and growing); (v) the evidence showing that these esterases are ubiquitous (growing and confirmed by bioinformatics studies). By combining the relevant available facts it can be concluded that if a certain polyester shows ultimate biodegradation when exposed to a natural inoculum, it can be considered biodegradable and need not be retested using other inoculums. Obviously, if the polymer does not show ultimate biodegradation it must be considered recalcitrant, until proven otherwise.


Assuntos
Plásticos Biodegradáveis , Poliésteres , Poliésteres/metabolismo , Plásticos Biodegradáveis/química , Polímeros/química , Esterases/química , Esterases/metabolismo , Hidrólise , Biodegradação Ambiental
4.
Sheng Wu Gong Cheng Xue Bao ; 39(5): 1889-1911, 2023 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-37212220

RESUMO

The pollution caused by improper handling of plastics has become a global challenge. In addition to recycling plastics and using biodegradable plastics, an alternative solution is to seek efficient methods for degrading plastics. Among them, the methods of using biodegradable enzymes or microorganisms to treat plastics have attracted increasing attention because of its advantages of mild conditions and no secondary environmental pollution. Developing highly efficient depolymerizing microorganisms/enzymes is the core for plastics biodegradation. However, the current analysis and detection methods cannot meet the requirements for screening efficient plastics biodegraders. It is thus of great significance to develop rapid and accurate analysis methods for screening biodegraders and evaluating biodegradation efficiency. This review summarizes the recent application of various commonly used analytical techniques in plastics biodegradation, including high performance liquid chromatography, infrared spectroscopy, gel permeation chromatography, and determination of zone of clearance, with fluorescence analysis techniques highlighted. This review may facilitate standardizing the characterization and analysis of plastics biodegradation process and developing more efficient methods for screening plastics biodegraders.


Assuntos
Plásticos Biodegradáveis , Plásticos Biodegradáveis/química , Biodegradação Ambiental
5.
Int J Biol Macromol ; 234: 123715, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801278

RESUMO

Plastics play an essential role in food packaging; their primary function is to preserve the nature of the food, ensure adequate shelf life and ensure food safety. Plastics are being produced on a global scale in excess of 320 million tonnes annually, with demand rising to reflect the material in wide range of applications. Nowadays, the packaging industry is a significant consumer of synthetic plastic made from fossil fuels. Petrochemical-based plastics are regarded as the preferred material for packaging. Nonetheless, using these plastics in large quantities results in a long-standing environment. Environmental pollution and the depletion of fossil fuels have prompted researchers and manufacturers to develop eco-friendly biodegradable polymers to replace petrochemical-based polymers. As a result, the production of eco-friendly food packaging material has sparked increased interest as a viable alternative to petrochemical-based polymers. Polylactic acid (PLA) is one of the compostable thermoplastic biopolymers that is biodegradable and renewable in nature. High-molecular-weight PLA can be used to produce fibres, flexible, non-wovens, hard and durable materials (100,000 Da or even higher).The chapter focuses on food packaging techniques, food industry waste, biopolymers, their classification, PLA synthesis, the importance of PLA properties for food packaging, and technologies used to process PLA in food packaging.


Assuntos
Plásticos Biodegradáveis , Embalagem de Alimentos , Química Verde , Poliésteres , Plásticos Biodegradáveis/síntese química , Plásticos Biodegradáveis/química , Biopolímeros/química , Fermentação , Embalagem de Alimentos/métodos , Química Verde/métodos , Poliésteres/síntese química , Poliésteres/química , Polimerização , Humanos , Animais
6.
J Sci Food Agric ; 103(3): 1088-1096, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35315088

RESUMO

BACKGROUND: Non-value agrifood byproducts are rich in biomolecules such as proteins and polysaccharides, and possess film-forming ability, motivating their use in the development of biodegradable plastics. This work studied the feasibility of using locust bean milling-derived dust (LBMD) as a source of biomolecules suitable for developing biodegradable plastics. RESULTS: LBMD is composed of 56% protein, 28% carbohydrate, 10% moisture, 6% lipid, and 2% ash. In addition, phenolic compounds are also present. The carbohydrates are mainly composed by (1 → 4)-mannose, (1 → 4,6)-mannose, and t-galactose glycosidic linkages. Depending on the LBMD concentration used, when employed in casting biodegradable plastics, LBMD yields transparent yellowish bioplastics with 90% elongation at break and surface water contact angles ranging from 60° to 90°. Additionally, LBMD-based bioplastics display antioxidant activity, inhibiting cationic 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals up to 61% in just 24 h. LBMD-based bioplastics are disintegrated when incubated on the soil surface for 34 weeks, perhaps acting as a soil nutrient. CONCLUSION: LBMD represents a potential source of biomolecules for producing transparent, flexible, water tolerant, antioxidant, and biodegradable bioplastics, opening up opportunities to implement a novel circular strategy to valorize this locust bean industry byproduct. © 2022 Society of Chemical Industry.


Assuntos
Antioxidantes , Plásticos Biodegradáveis , Plásticos Biodegradáveis/química , Manose , Biopolímeros/química , Proteínas , Água/química , Solo , Plásticos/química
7.
Chinese Journal of Biotechnology ; (12): 1889-1911, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-981178

RESUMO

The pollution caused by improper handling of plastics has become a global challenge. In addition to recycling plastics and using biodegradable plastics, an alternative solution is to seek efficient methods for degrading plastics. Among them, the methods of using biodegradable enzymes or microorganisms to treat plastics have attracted increasing attention because of its advantages of mild conditions and no secondary environmental pollution. Developing highly efficient depolymerizing microorganisms/enzymes is the core for plastics biodegradation. However, the current analysis and detection methods cannot meet the requirements for screening efficient plastics biodegraders. It is thus of great significance to develop rapid and accurate analysis methods for screening biodegraders and evaluating biodegradation efficiency. This review summarizes the recent application of various commonly used analytical techniques in plastics biodegradation, including high performance liquid chromatography, infrared spectroscopy, gel permeation chromatography, and determination of zone of clearance, with fluorescence analysis techniques highlighted. This review may facilitate standardizing the characterization and analysis of plastics biodegradation process and developing more efficient methods for screening plastics biodegraders.


Assuntos
Plásticos Biodegradáveis/química , Biodegradação Ambiental
8.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293023

RESUMO

Finding alternatives to diminish plastic pollution has become one of the main challenges of modern life. A few alternatives have gained potential for a shift toward a more circular and sustainable relationship with plastics. Biodegradable polymers derived from bio- and fossil-based sources have emerged as one feasible alternative to overcome inconveniences associated with the use and disposal of non-biodegradable polymers. The biodegradation process depends on the environment's factors, microorganisms and associated enzymes, and the polymer properties, resulting in a plethora of parameters that create a complex process whereby biodegradation times and rates can vary immensely. This review aims to provide a background and a comprehensive, systematic, and critical overview of this complex process with a special focus on the mesophilic range. Activity toward depolymerization by extracellular enzymes, biofilm effect on the dynamic of the degradation process, CO2 evolution evaluating the extent of biodegradation, and metabolic pathways are discussed. Remarks and perspectives for potential future research are provided with a focus on the current knowledge gaps if the goal is to minimize the persistence of plastics across environments. Innovative approaches such as the addition of specific compounds to trigger depolymerization under particular conditions, biostimulation, bioaugmentation, and the addition of natural and/or modified enzymes are state-of-the-art methods that need faster development. Furthermore, methods must be connected to standards and techniques that fully track the biodegradation process. More transdisciplinary research within areas of polymer chemistry/processing and microbiology/biochemistry is needed.


Assuntos
Plásticos Biodegradáveis , Dióxido de Carbono , Polímeros/química , Biodegradação Ambiental , Plásticos/química , Plásticos Biodegradáveis/química
9.
Emerg Top Life Sci ; 6(4): 423-433, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36069649

RESUMO

Biodegradable plastics have been proposed as a potential solution to plastic pollution, as they can be biodegraded into their elemental components by microbial action. However, the degradation rate of biodegradable plastics is highly variable across environments, leading to the potential for accumulation of plastic particles, chemical co-contaminants and/or degradation products. This paper reviews the toxicological effects of biodegradable plastics on species and ecosystems, and contextualises these impacts with those previously reported for conventional polymers. While the impacts of biodegradable plastics and their co-contaminants across levels of biological organisation are poorly researched compared with conventional plastics, evidence suggests that individual-level effects could be broadly similar. Where differences in the associated toxicity may arise is due to the chemical structure of biodegradable polymers which should facilitate enzymatic depolymerisation and the utilisation of the polymer carbon by the microbial community. The input of carbon can alter microbial composition, causing an enrichment of carbon-degrading bacteria and fungi, which can have wider implications for carbon and nitrogen dynamics. Furthermore, there is the potential for toxic degradation products to form during biodegradation, however understanding the environmental concentration and effects of degradation products are lacking. As global production of biodegradable polymers continues to increase, further evaluation of their ecotoxicological effects on organisms and ecosystem function are required.


Assuntos
Plásticos Biodegradáveis , Plásticos Biodegradáveis/química , Ecossistema , Biodegradação Ambiental , Polímeros/química , Polímeros/metabolismo , Carbono
10.
Proc Natl Acad Sci U S A ; 119(15): e2119523119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377816

RESUMO

We present an approach to fabricate biological matrix composites made entirely from cultured plant cells. We utilize the cell's innate ability to synthesize nanofibrillar cell walls, which serve as the composite's fundamental building blocks. Following a controlled compression/dehydration process, the cells arrange into lamellar structures with hierarchical features. We demonstrate that the native cell wall nanofibrils tether adjacent cells together through fibrillar interlocking and intermolecular hydrogen bonding. These interactions facilitate intercellular adhesion and eliminate the need for other binders. Our fabrication process utilizes the entire plant cell, grown in an in vitro culture; requires no harsh chemical treatments or waste-generating extraction or selection processes; and leads to bulk biocomposites that can be produced in situ and biodegrade in soil. The final mechanical properties are comparable to commodity plastics and can be further modulated by introducing filler particles.


Assuntos
Plásticos Biodegradáveis , Células Vegetais , Plásticos Biodegradáveis/síntese química , Plásticos Biodegradáveis/química , Técnicas de Cultura de Células , Células Cultivadas
11.
Int J Biol Macromol ; 195: 49-58, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34856218

RESUMO

This study aimed to develop a plasticized starch (PS) based film loaded with chitosan nanoparticles (CNPs, 1, 2, 3, and 4%) as a reinforcing and antibacterial agent. We examined the morphology, biodegradability, mechanical, thermo-mechanical, and barrier properties of the PS/CNPs films. The antimicrobial activity against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria was investigated by colony forming unit (CFU) and disc diffusion methods. A dense structure was obtained for all PS/CNPs films and, thus, their complete biodegradation occurred in more days than neat PS. The increase in the CNPs percentage led to improved mechanical behaviour and barrier properties. PS-CNPs composite films revealed inhibition zones against both E. coli and S. aureus, with the 100% reduction in CFU against S. aureus. The current study exhibited that PS-CNPs films were more effective in inhibiting bacteria growth than neat PS film, confirming the composite films potential application as antimicrobial food packaging.


Assuntos
Anti-Infecciosos/farmacologia , Plásticos Biodegradáveis/farmacologia , Quitosana/farmacologia , Amido/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Plásticos Biodegradáveis/síntese química , Plásticos Biodegradáveis/química , Quitosana/síntese química , Quitosana/química , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Embalagem de Alimentos , Nanocompostos , Tamanho da Partícula , Permeabilidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
12.
Cienc. tecnol. salud ; 9(2): 189-198, 2022. il^c27
Artigo em Espanhol | LILACS, DIGIUSAC, LIGCSA | ID: biblio-1415975

RESUMO

La contaminación por plásticos petroquímicos es una grave amenaza para el medio ambiente que requiere im-plementar alternativas como los bioplásticos para lograr un desarrollo sostenible. Los polihidroxialcanoatos (PHA) son polímeros utilizados para la producción de plásticos biodegradables y que han llamado la atención como sustitutos de los plásticos de base fósil. Sin embargo, el costo de producción de los PHA constituye una barrera para su producción industrial a gran escala. Las de bacterias de hábitats salinos son microorganismos prometedores para la síntesis de PHA debido a sus características tales como altos requisitos de salinidad que previenen la contaminación microbiana, la alta presión osmótica intracelular que permite una fácil lisis celular para purificar los PHA y la capacidad para usar un amplio espectro de sustratos. La presente investigación planteó determinar las cepas nativas de bacterias halófilas y halotolerantes de la Laguna de Ayarza capaces de producir PHA, establecer la capacidad que tienen de utilizar residuos agrícolas para la producción de PHA y determinar su eficiencia. Esto se logró a través de la inoculación de las cepas productoras de PHA en medios de fermentación con pulpa de café, cáscaras de plátanos y salvado de trigo lo que permitió determinar las cepas más eficientes. Se encontró que las bacterias productoras de PHA pertenecen a las especies: Alcaligenes faecalis, Bacillus idriensis, Bacillus megaterium, Exiguobacterium acetylicum, E. aurantiacum, Pseudomonas cuatrocienegasensis y Sta-phylococcus capitis y que las cepas AP21-14, AP21-10 y AP21-03 mostraron los mejores resultados que podrían ser prometedores para la producción a nivel industrial.


Pollution by petrochemical plastics is a serious threat to the environment that requires the implementation of al-ternatives such as bioplastics to achieve sustainable development. Polyhydroxyalkanoates (PHAs) are polymers used for the production of biodegradable plastics and have drawn attention as substitutes for fossil-based plastics. However, the cost of producing PHAs constitutes a barrier to their large-scale industrial production. Bacteria from saline environments bacteria are promising microorganisms for PHA synthesis due to their characteristics such as high salinity requirements that prevent microbial contamination, high intracellular osmotic pressure that allows easy cell lysis to purify PHAs, and the ability to use a broad spectrum of substrates. This research project aimed to determine the native strains of halophilic and halotolerant bacteria from Laguna de Ayarza capable of producing PHA, establish their ability to use agricultural residues for the production of PHA, and determine their efficiency. This was achieved through the inoculation of the PHA-producing strains in fermentation media with coffee pulp, banana peels and wheat bran, which allowed determining the most efficient strains. It was found that the PHA-producing bacteria belong to the species: Alcaligenes faecalis, Bacillus idriensis, Bacillus mega-terium, Exiguobacterium acetylicum, E. aurantiacum, Pseudomonas cuatrocienegasensis and Staphylococcus capitis and that the strains AP21-14, AP21-10 and AP21-03 showed the best results that could be promising for production at an industrial level.


Assuntos
Humanos , Halomonas , Poli-Hidroxialcanoatos/análise , Plásticos Biodegradáveis/química , Pseudomonas/química , Bacillus megaterium/química , Laguna Costeira , Alcaligenes faecalis/química , Fermentação , Staphylococcus capitis , Exiguobacterium/química , Guatemala , Resíduos Industriais/efeitos adversos
13.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885735

RESUMO

This study aimed to develop an active biodegradable bilayer film and to investigate the release behaviors of active compounds into different food matrices. Cinnamaldehyde (CI) or thymol (Ty) was encapsulated in ß-cyclodextrin (ß-CD) to prepare the active ß-CD inclusion complex (ß-CD-CI/ß-CD-Ty). The tilapia fish gelatin-sodium alginate composite (FGSA) containing ß-CD-CI or ß-CD-Ty was coated on the surface of PLA film to obtain the active bilayer film. Different food simulants including liquid food simulants (water, 3% acetic acid, 10% ethanol, and 95% ethanol), solid dry food simulant (modified polyphenylene oxide (Tenax TA)), and the real food (Japanese sea bass) were selected to investigate the release behaviors of bilayer films into different food matrixes. The results showed that the prepared ß-CD inclusion complexes distributed evenly in the cross-linking structure of FGSA and improved the thickness and water contact angle of the bilayer films. Active compounds possessed the lowest release rates in Tenax TA, compared to the release to liquid simulants and sea bass. CI and Ty sustained the release to the sea bass matrix with a similar behavior to the release to 95% ethanol. The bilayer film containing ß-CD-Ty exhibited stronger active antibacterial and antioxidant activities, probably due to the higher release efficiency of Ty in test mediums.


Assuntos
Acroleína/análogos & derivados , Plásticos Biodegradáveis/química , Embalagem de Alimentos , Timol/química , Acroleína/química , Acroleína/farmacologia , Alginatos/química , Animais , Bass , Plásticos Biodegradáveis/farmacologia , Quitosana/química , Aditivos Alimentares , Microbiologia de Alimentos , Gelatina/química , Poliésteres/química , Poliésteres/farmacologia , Tilápia , Água , beta-Ciclodextrinas/química
14.
Molecules ; 26(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885750

RESUMO

Poly(benzyl malate) (PBM), together with its derivatives, have been studied as nanocarriers for biomedical applications due to their superior biocompatibility and biodegradability. The acquisition of PBM is primarily from chemical routes, which could offer polymer-controlled molecular weight and a unique controllable morphology. Nowadays, the frequently used synthesis from L-aspartic acid gives an overall yield of 4.5%. In this work, a novel synthesis route with malic acid as the initiator was successfully designed and optimized, increasing the reaction yield up to 31.2%. Furthermore, a crystalline form of PBM (PBM-2) that polymerized from high optical purity benzyl-ß-malolactonate (MLABn) was discovered during the optimization process. X-ray diffraction (XRD) patterns revealed that the crystalline PBM-2 had obvious diffraction peaks, demonstrating that its internal atoms were arranged in a more orderly manner and were different from the amorphous PBM-1 prepared from the racemic MLABn. The differential scanning calorimetry (DSC) curves and thermogravimetric curves elucidated the diverse thermal behaviors between PBM-1 and PBM-2. The degradation curves and scanning electron microscopy (SEM) images further demonstrated the biodegradability of PBM, which have different crystal structures. The hardness of PBM-2 implied the potential application in bone regeneration, while it resulted in the reduction of solubility when compared with PBM-1, which made it difficult to be dissolved and hydrogenated. The solution was therefore heated up to 75 °C to achieve benzyl deprotection, and a series of partially hydrogenated PBM was sequent prepared. Their optimal hydrogenation rates were screened to determine the optimal conditions for the formation of micelles suitable for drug-carrier applications. In summary, the synthesis route from malic acid facilitated the production of PBM for a shorter time and with a higher yield. The biodegradability, biosafety, mechanical properties, and adjustable hydrogenation widen the application of PBM with tunable properties as drug carriers.


Assuntos
Plásticos Biodegradáveis/síntese química , Portadores de Fármacos/síntese química , Malatos/química , Polímeros/síntese química , Plásticos Biodegradáveis/química , Portadores de Fármacos/química , Humanos , Hidrogênio/química , Hidrogenação/efeitos dos fármacos , Micelas , Microscopia Eletrônica de Varredura , Polimerização , Polímeros/química , Solubilidade , Difração de Raios X
15.
Int J Biol Macromol ; 193(Pt B): 1685-1693, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34748788

RESUMO

With the increasingly serious plastic pollution, people's demand for the multi-functional biodegradable plastics is becoming more and more urgent. Inspired by the crosslinked shape memory polymers, the crosslinked starch films were synthesized by inducing the decomposition of benzophenone into free radical and depriving hydrogen on starch macromolecules under UV irradiation, in order to gain a high shape memory performance. The results showed that a three-dimensional crosslinking network between starch macromolecule chains was formed. Compared with the uncrosslinked starch films, the photo-crosslinked films not only had higher mechanical property (tensile strength increased by 154%), but also had better water resistance (water contact angle from 60° to 87°) due to the reduction of free hydroxyl groups. In addition, the stable covalent bonds serving as netpoints endow photo-crosslinked films with great improvement in shape memory property, with nearly 180° bending recovery. More importantly, the maximum shape memory fixity ratio (Rf) and shape memory recovery ratio (Rr) under stretch deformation were 96.5% and 99.8%, respectively. And the Rf and Rr could reach 94.6% and 79.8% even at higher strain. In all, the excellent shape memory performance and good degradability crosslinked starch films, which have great potential application in disposable heat-shrinkable packaging materials.


Assuntos
Plásticos Biodegradáveis/química , Embalagem de Alimentos , Membranas Artificiais , Materiais Inteligentes/química , Amido/química
16.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638570

RESUMO

The microbial biodegradation of new PLA and PCL materials containing birch tar (1-10% v/v) was investigated. Product of dry distillation of birch bark (Betula pendula Roth) was added to polymeric materials to obtain films with antimicrobial properties. The subject of the study was the course of enzymatic degradation of a biodegradable polymer with antibacterial properties. The results show that the type of the material, tar concentration, and the environment influenced the hydrolytic activity of potential biofilm degraders. In the presence of PCL films, the enzyme activities were higher (except for α-D-glucosidase) compared to PLA films. The highest concentration of birch tar (10% v/v) decreased the activity of hydrolases produced by microorganisms to the most significant extent; however, SEM analysis showed the presence of a biofilm even on plastics with the highest tar content. Based on the results of the biological oxygen demand (BOD), the new materials can be classified as biodegradable but, the biodegradation process was less efficient when compared to plastics without the addition of birch tar.


Assuntos
Anti-Infecciosos/química , Betula/química , Plásticos Biodegradáveis/química , Poliésteres/química , Alcatrões/química , Aminopeptidases/metabolismo , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Betula/microbiologia , Plásticos Biodegradáveis/farmacologia , Biofilmes , Análise da Demanda Biológica de Oxigênio , Destilação , Ensaios Enzimáticos , Esterases/metabolismo , Lipase/metabolismo , Casca de Planta/química , Casca de Planta/microbiologia , Poliésteres/metabolismo , Alcatrões/farmacologia , alfa-Glucosidases/metabolismo , beta-Glucosidase/metabolismo
17.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638747

RESUMO

Amphiphilic copolymers with pendant functional groups in polyester segments are widely used in nanomedicine. These enriched functionalities are designed to form covalent conjugates with payloads or provide additional stabilization effects for encapsulated drugs. A general method is successfully developed for the efficient preparation of functional biodegradable PEG-polyester copolymers via click chemistry. Firstly, in the presence of mPEG as initiator, Sn(Oct)2-catalyzed ring-opening polymerization of the α-alkynyl functionalized lactone with D,L-lactide or ε-caprolactone afforded linear mPEG-polyesters bearing multiple pendant alkynyl groups. Kinetic studies indicated the formation of random copolymers. Through copper-catalyzed azide-alkyne cycloaddition reaction, various small azido molecules with different functionalities to polyester segments are efficiently grafted. The molecular weights, polydispersities and grafting efficiencies of azido molecules of these copolymers were investigated by NMR and GPC. Secondly, it is demonstrated that the resulting amphiphilic functional copolymers with low CMC values could self-assemble to form nanoparticles in aqueous media. In addition, the in vitro degradation study and cytotoxicity assays indicated the excellent biodegradability and low cytotoxicity of these copolymers. This work provides a general approach toward the preparation of functional PEG-polyester copolymers in a quite efficient way, which may further facilitate the application of functional PEG-polyesters as drug delivery materials.


Assuntos
Plásticos Biodegradáveis , Química Click , Sistemas de Liberação de Medicamentos , Poliésteres , Polietilenoglicóis/química , Plásticos Biodegradáveis/síntese química , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/farmacocinética , Plásticos Biodegradáveis/farmacologia , Catálise , Células HeLa , Humanos , Poliésteres/síntese química , Poliésteres/química , Poliésteres/farmacocinética , Poliésteres/farmacologia , Compostos de Estanho/química
18.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638967

RESUMO

The objective of this work was to develop a chitosan/agar-agar bioplastic film incorporated with bacteriocin that presents active potential when used as food packaging. The formulation of the film solution was determined from an experimental design, through the optimization using the desirability function. After establishing the concentrations of the biopolymers and the plasticizer, the purified bacteriocin extract of Lactobacillus sakei was added, which acts as an antibacterial agent. The films were characterized through physical, chemical, mechanical, barrier, and microbiological analyses. The mechanical properties and water vapor permeability were not altered by the addition of the extract. The swelling property decreased with the addition of the extract and the solubility increased, however, the film remained intact when in contact with the food, thus allowing an efficient barrier. Visible light protection was improved by increased opacity and antibacterial capacity was effective. When used as Minas Frescal cream cheese packaging, it contributed to the increase of microbiological stability, showing a reduction of 2.62 log UFC/g, contributing a gradual release of the active compound into the food during the storage time. The film had an active capacity that could be used as a barrier to the food, allowing it to be safely packaged.


Assuntos
Antibacterianos/química , Bacteriocinas/química , Plásticos Biodegradáveis/química , Biopolímeros/química , Embalagem de Alimentos/métodos , Ágar/química , Materiais Biocompatíveis/química , Queijo/microbiologia , Quitosana/química , Temperatura Alta , Latilactobacillus sakei/química , Latilactobacillus sakei/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Permeabilidade , Extratos Vegetais/química , Plastificantes/química , Rodófitas/química , Solubilidade , Vapor
19.
Molecules ; 26(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34684693

RESUMO

There have been many studies on the development biodegradable films using starch isolated from various food sources as a substitute for synthetic plastic packaging films. In this study, starch was extracted from ginkgo (Ginkgo biloba) nuts, which were mainly discarded and considered an environment hazard. The prepared starch (GBS) was then used for the preparation of antioxidant films by incorporating various amounts of cinnamon (Cinnamomum zeylanicum) essential oil (CZEO), which provides antioxidant activity. The prepared GBS films with CZEO were characterized by measuring physical, optical, and thermal properties, along with antioxidant activity (ABTS, DPPH, and FRAP) measurements. With the increasing amount of CZEO, the flexibility and antioxidant activities of the GBS films increased proportionally, whereas the tensile strength of the films decreased. The added CZEO also increased the water vapor permeability of the GBS films, and the microstructure of the GBS films was homogeneous overall. Therefore, the obtained results indicate that the developed GBS films containing CZEO are applicable as antioxidant food packaging.


Assuntos
Antioxidantes/metabolismo , Plásticos Biodegradáveis/química , Cinnamomum zeylanicum/química , Ginkgo biloba/química , Óleos Voláteis/química , Folhas de Planta/química , Amido/química , Embalagem de Alimentos/métodos , Nozes/química , Resistência à Tração
20.
Molecules ; 26(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34684888

RESUMO

Human health, food spoilage, and plastic waste, which are three great topical concerns, intersect in the field of food packaging. This has created a trend to replace synthetic food preservatives with natural ones, to produce bio-functional food packaging, and to shift towards biodegradable polymeric materials. Among the natural bioactive agents, essential oils are gaining more and more attention in food packaging applications due to their various benefits and fewer side-effects. However, their volatility, hydrophobicity, and strong odor and taste limit the direct use in food-related applications. Fixation into polymeric matrices represents a suitable strategy to promote the benefits and reduce the drawbacks. Emulsification and electrospinning are largely used techniques for protection and stabilization of essential oils. These methods offer various advantages in active food packaging, such as controlled release, ensuring long-term performance, decreased amounts of active agents that gain enhanced functionality through increased available surface area in contact with food, and versatility in packaging design. This review focuses on creating correlations between the use of essential oils as natural additives, stabilization methods, and biodegradable polymeric matrices or substrates in developing bioactive food packaging materials. Documentation was performed via the Scopus, ScienceDirect, and PubMed databases, selecting the publications after the year 2018. Particular attention was given to the publications that tested materials on food/food pathogens to evaluate their performances in retarding spoilage. Research gaps were also identified on the topic, materials being tested mainly at short time after preparation without considering the long-term storage that usually occurs in actual practice between production and use, and insufficient research related to upscaling.


Assuntos
Plásticos Biodegradáveis/química , Óleos Voláteis/química , Polímeros/química , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Conservantes de Alimentos/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...